
Introduction

Scanline rendering is an algorithm for visible surface
determination, in 3D computer graphics, that works on a row-
by-row basis rather than a polygon-by-polygon or pixel-by-
pixel basis. All of the polygons to be rendered are first sorted
by the top y coordinate at which they first appear, then each
row or scan line of the image is computed using the
intersection of a scan line with the polygons on the front of
the sorted list, while the sorted list is updated to discard no-
longer-visible polygons as the active scan line is advanced
down the picture.

Scan Line Algorithm

As each scan line is processed, all polygon surfaces intersecting
that line are examined to determine which are visible.

Across each scan line, depth calculations are made for each
overlapping surface to determine which is nearest to the view
plane. When the visible surface has been determined, the inensity
value for that position is entered into the refresh buffer.

In this algorithm we assume that tables are set up for the various
surfaces, which include both an edge table and a polygon table.

The edge table contains coordinate endpoints for each line in-the
scene, the inverse slope of each line, and pointers into the polygon
table to identify the surfaces bounded by each line.

The polygon table contains coefficients of the plane equation for
each surface, intensity information for the surfaces, and possibly
pointers into the edge.

The active list will contain only edges that cross the current scan
line, sorted in order of increasing x. In addition, we define a flag
for each surface that is set on or off to indicate whether a
position along a scan line is inside or outside of the surface.
Scan lines are processed from left to right.

At the leftmost boundary of a surface, the surface flag is turned
on; and at the rightmost boundary, it is turned off.

The active list for scan line 1 contains information from the edge
table for edges AB, BC, EH, and FG. For positions along this scan
line between edges AB and BC, only the flag for surface Sl is
on.Therefore no depth calculations are necessary, and intensity
information for surface S1, is entered from the polygon table into
the refresh buffer.

Similarly, between edges EH and FG, only the flag for surface S2
is on. NO other positions along scan line 1 intersect surfaces, so
the intensity values in the other areas are set to the background
intensity.

For scan lines 2 and 3 in Figure, the active edge list conntains
edges AD, EH, BC, and FG. Along scan line 2 from edge AD to
edge EH, only the flag for surface S1 is on. But between edges EH
and BC, the flags for both surfaces are on.

In this interval, depth calculations must be made using the plane
coefficients for the two surfaces. For this example, the depth of
surface SI is assumed to be less than that of S2, so intensities for
surface S1 are loaded into the refresh buffer until boundary BC is
encountered. Then the flag for surface SI goes off, and intensities

for surface S2 are stored until edge FG is passed.

Coherence property: along the scan lines as we pass from one
scan line to the next, scan line 3 has the same active list of edges

as scan line 2. Since no changes have occurred in line intersections,
it is unnecessary again to make depth calculations between edges
EH and BC.

Area Subdivision algorithm

Area coherence: locate those view areas that represent part of a
single surface.

Successively divide the total viewing area into smaller and
smaller rectangles until each small area is the projection of part
of n single visible surface or no surface at all.

Initially divide the area into four equal parts at each step

A viewing area with a resolution of 1024 by 1024 could be
subdivided ten times in this way before a.sub area is reduced to
a pint.

No further subdivisions of a specified area are needed if one of the
following conditions is true:

1. All surfaces are outside surfaces with respect to the area.

2. Only one inside, overlapping, or surrounding surface is in the area.

3. A surrounding surface obscures all other surfaces within the area
boundaries.

•Test 1 can be carried out by checking the bounding
rectangles of all surfaces against the area boundaries.

•Test 2 can also use the bounding rectangles in the xy plane
to identify an inside surface.

•For other types of surfaces, the bounding rectangles can be
used as an initial check. If a single bounding rectangle
intersects the area in some way, additional checks are used
to determine whether the surface is surrounding,
overlapping, or outside.

•Once a single inside, overlapping, or surrounding surface
has been identified, its pixel intensities are t r a n s f e d to
the appropriate area within the frame buffer.

One method for implementing test 3 is to order surfaces
according to their minimum depth from the view plane.

For each surrounding surface, we then compute the
maximum depth within the area under consideration.

If the maximum depth of one of these surrounding
surfaces is closer to the view plane than the minimum
depth of all other surfaces within the area, test 3 is
satisfied.

Zmax

(Surrounding Surface)

Within a specified area, a surrounding surface with
a maximum depth of Zmax obscures all surfaces that
have a minimum depth beyond Zmax.

Xv

Zv

Another method for carrying out test 3 that does not require
depth sorting.

It uses plane equations to calculate depth values at the four
vertices of the area for all surrounding, overlapping, and
inside surfaces.

If the calculated depths for one of the surrounding surfaces
is less than the calculated depths for all other surfaces, test
3 is true.

Then the area can be filled with the intensity values of the

surrounding surface.

Application
The Nintendo DS is the latest hardware to render 3D scenes in this
manner, with the option of caching the rasterized images into VRAM.

The sprite hardware prevalent in 1980s games machines can be
considered a simple 2D form of scanline rendering.

Sony experimented with software scanline renderers on a
second Cell processor during the development of the PlayStation 3,
before settling on a conventional CPU/GPU arrangement.

The Nintendo DS is the latest hardware to render 3D
scenes in this manner, with the option of caching the
rasterized images into VRAM.

Scope of Research

